电子工程专辑
UBM China

精密模拟控制器助力解决可充电电池制造瓶颈问题

上网日期: 2014年10月24日 ?? 作者: 廖文帅,Luis Orozco ?? 我来评论 字号:放大 | 缩小 分享到:sina weibo tencent weibo tencent weibo


打开微信“扫一扫”,打开网页后点击屏幕右上角分享按钮

1.扫描左侧二维码
2.点击右上角的分享按钮
3.选择分享给朋友

关键字:精密模拟控制器? 锂离子电池? 线性电压调节器?

控制环路设计:模拟或数字

每个系统都提供一个电压控制环路,还有一个电流控制环路,如图4所示。对于汽车中使用的电池单元,汽车加速时需要快速斜升电流,因此测试时必须对其进行仿真。快速变化速率和宽动态范围让电流控制环路的设计变得十分棘手。

精密模拟控制器助力解决可充电电池制造瓶颈问题(电子工程专辑)
图4. 电池制造系统中的控制环路

一个系统需要四个不同的控制环路,这些环路可在模拟域或数字域中实现:恒流(CC)充电、CC 放电、恒压(CV)充电和CV放电。需干净地切换CC 和CV 模式,无毛刺或尖峰。

图5 显示数字控制环路的框图。微控制器或DSP连续采样电压和电流;数字算法决定PWM功率级的占空比。这种灵活的方式允许进行现场升级和错误修复,但有一些缺点。ADC采样速率必须超过环路带宽的两倍,大部分系统采样速率为环路带宽的10倍。这意味着,双极性输入ADC必须工作在100 kSPS,才能采用单个转换器和分流电阻涵盖充电和放电模式。某些设计人员在速度和精度更高的系统中采用16位、250 kSPS ADC。作为控制环路的一部分,ADC精度决定了系统的整体精度,因此选择高速、低延迟、低失真的ADC很重要,比如6通道、16 、250 kSPS AD7656。

精密模拟控制器助力解决可充电电池制造瓶颈问题(电子工程专辑)
图5. 数字控制环路

在多通道系统中,每个通道一般要求使用一个微控制器和一组专用ADC。微控制器处理数据采集、数字控制环路、PWM生成、控制和通信功能,因此它必须具有非常高的处理能力。此外,由 于处理器必须处理多个并行任务,PWM 信号中的抖动可能会引起问题,尤其是PWM 占空比较低时。作为控制环路的一部分,微处理器会影响环路带宽。

图6中的电池测试系统采用模拟控制环路。两个DAC 通道控制CC和CV设定点。

AD8450/AD8451用于电池测试与化成系统的精密模拟前端和控制器可测量电池电压和电流,并与设定点进行比较。CC和CV环路决定MOSFET 功率级的占空比模式从充电变为放电后,测量电池电流的仪表放大器的极性转,以保证 其输出为正,同时在CC和CV放大器内部切换可选择正确的补偿网络。整个功能通过单引脚利用标准数字逻辑控制。

精密模拟控制器助力解决可充电电池制造瓶颈问题(电子工程专辑)
图6. 模拟控制环路

在此方案中,ADC监测系统,但它不属于控制环路的一部分。扫描速率与控制环路性能无关,因此在多通道系统中,单个ADC可测量大量通道上的电流和电压。对于DAC而言同样如此,因此针对多个通道可采用低成本DAC。此外,单个处理器只需控制CV和CC设定点、工作模式和管理功能,因此它能与多通道实现接口。处理器不决定控制环路性能,因此并不要求高性能。

ADP1972 PWM发生器使用单引脚控制降压或升压工作模式。模拟控制器和PWM发生器之间的接口由不受抖动影响的低阻抗模拟信号构成;而抖动会使数字环路产生问题。表2显示模拟环路相比数字环路如何提供更高的性能和更低的成本。

精密模拟控制器助力解决可充电电池制造瓶颈问题(电子工程专辑)
表2. 模拟和数字控制环路比较

下一页:特定温度范围内的系统精度


?第一页?上一页 1???2???3???4???5?下一页?最后一页





我来评论 - 精密模拟控制器助力解决可充电电池制造瓶颈问题
评论:
*? 您还能输入[0]字
分享到: 新浪微博 qq空间
验证码:
????????????????
?

关注电子工程专辑微信
扫描以下二维码或添加微信号“eet-china”

访问电子工程专辑手机网站
随时把握电子产业动态,请扫描以下二维码

?

5G网络在提供1Gbps至10Gbps吞吐量方面具有很好的前途, 并且功耗要求比今天的网络和手机都要低,同时还能为关键应用提供严格的延时性能。本期封面故事将会与您分享5G的关键技术发展,以及在4G网络上有怎样的进步。

?
?
有问题请反馈
推荐到论坛,赢取4积分X